

DropsA MaXtreme TROP Meet the staff of DropsA USA while previewing the latest in Minimum Quantity Lubrication (MQL) technology. Witness how DropsA can help eliminate coolant from your machining process. *3MM Drill

30X Deep (Through-Tool Lubrication)

southtec

6 million

Amazon

Gift Card

Drawing

at Booth!

ELIMINATE COOLANT BOOTH #2825

www.dropsausa.com - (586)566-1540

Jason Craft VP Sales & Marketing

EDUCATION:

• Bachelor of Science Degree in Industrial Engineering – University of Michigan

EXPERIENCE:

- Over 20 years of experience in industrial lubrication
- 10 Years in machine tool industry working with MQL technology

Metalworking fluid and the Machining Industry

Coolant and Metalworking Fluids

- Currently is the industry standard
- Floods the entire part with a water-based product which cools and provides lubrication.
- Has harmful characteristics which put both the environment and employees at risk

Minimum Quantity Lubrication

- Is the future of the machining industry
- Reduces the cutting forces between tooling and material by providing lubrication at the precise point of where it is needed.
- Safer for the industry and is more ecologically sustainable

Issues with Coolant and Metalworking Fluids

- Requires daily maintenance
- Can contain hazardous chemicals and may require special care when handling and removing
- Users may rely on a third-party company to handle the disposal of coolant that is no longer applicable
- Parts that are machined need to be thoroughly washed and dried before shipment
- 15% of the overall machining costs are directly related to metal working fluid

Minimum Quantity Lubrication Advantages

- Improving the work environment in both economical and ecological ways
- Provides a safer workplace for employees
- Promises a green future for the machining industry.
- Increased efficiencies
- Tool life improvements
- Improved product output
- No disposal costs

- No harmful VOC's released into the environment
- Contains no chlorinated perfins
- Biologically enhanced lubricants offers safe alternatives
- Reduced down time

Our first steps in MQL

- DropsA first entered the MQL market as a user in 2005
- MKD served as a through tool application
- VIP for tools served as an external air oil application
- The main goal was to reduce overall production costs and create a higher quality part in less time
- Allowed our company to control cost while competing on a global level

Obstacles Implementing MQL within DropsA

- Tooling technology provided limited uses in through tool applications
- Applications with respect to through tool were limited by the size of the orifice.
- Both oil and aerosol technology still had room to improve
- Resistance from machine operators to convert to new technology
- ROI is case by case basis

Improvements in Technology

- MQL technology has improved in the mixing process. Smaller oil droplet sizes are possible.
- Oil technology improvements providing a superior lubrication for both through tool and external applications.
- Increase in understanding of aerosol generation

MaXtreme leading the future of MQL

- MaXtreme has proven that the obstacles that once held MQL back are no longer a cause of concern.
- Particle sizes have decreased significantly and now are on the sub micron level
- More advance machining techniques are now applicable when it comes to MQL
- Through tool capabilities extending all the way down to, but not limited to 2.5mm (0.0984252in)

Single vortex vs Dual vortex solutions

- Single vortex can be used in general machining where through tool orifice is not restricted
- When tooling is nonrestrictive MQL applications can be easily adaptable
- Dual vortex allows for a higher performance aerosol to be generated
- In situations were tool orifice size is decreased a system such as this allows MQL to still be applicable

How MQL can help you

- May reduce coolant disposal fees
- Employees are no longer exposed to toxic airborne particulates found in standard machining environments with water based cutting fluids
- Tooling costs decrease as tool life increases with the application of MQL
- Chips are no longer wet meaning the need for a drying and detergent process before disposal not needed.
- Workers safety and environmental safety is improved throughout the entire machining process.

MQL and Machinability

- MQL eliminates thermal cracking in carbide tools
- Less heat in tool = Better performance and tool life
- Due to tooling temperatures being decreased this means there is a reduction in heat that is transferred to the work piece through thermal conductivity
- A near total loss system allows for chips to stay separate from the process allowing for continuous production

MQL Improvements in Quality

- Surface finishes improve as there are no suspended particulates causing abrasions on the work piece
- Due to a near total loss lubrication system surface finishes do not diminish throughout production runs
- Better surface finishes mean that total machining time is decreased.
- Product spends less time in the machining phase.

Time savings Coolant vs. MQL

MAIN STAGES OF PROCESSING								
Tools	Quantity	Coolant Machining			MQL Machining			SAVING TIME
		Cutting speed V _c (m/min)	Feed rate f _n (mm/min)	Time (Min)	Cutting speed V _c (m/min)	Feed rate f _n (mm/min)	Time (Min)	(min)
Milling cutter Ø 65		245	400	0,27	245	400	0,27	-
Drill Ø 8,3 – Prof. 48	2	119	652	0,42	120	652	0,42	-
Drill mm Ø 8 – Prof.51	2	120	430	0,118	120	673	0,075	0,043
Tap G 3/8 20,8	4	500	668,42	0,24	500	668,42	0,24	-
Drill Ø 2,5 Prof. 20	8	50	318	0,50	47	480	0,33	0,17
Tap M 16x1 12,5	4	800	800	0,125	800	800	0,125	-
Drill Ø 5 Prof.	8	78,5	611	0,32	78,5	940	0,20	0,12
Gun drill Ø 12 – Prof 56	4	80	34	6,56	80	42,5	5,58	0,98
Gun drill Ø 8 – Prof 48	4	80	46,5	4,12	80	58	3,38	0,74
Tap M 14x1 Prof. 11,9	8	1000	1000	0,19	1000	1000	0,19	-
Tap G ¼ Prof. 16,1	8	1000	1336,84	0,19	1000	1336,84	0,19	-
		Total time of the Listed processing		13,053	Total time Listed proc	Total time of the 11 Listed processing		2,053
Other Operatio	ons - Fast Fee	eds – Tool cha	nges				I	<u> </u>

Why make the Switch?

- Obtain at least double your current tool life
- Eliminate the cost of coolant disposal
- Reduce the cost of machining and increase profit margins

Switching to MQL

- Any machine with through tool capabilities can be retrofitted with ease
- Often setup time lasts only a few hours, so machine downtime is limited
- Existing machine hardware can be repurposed
- MaXtreme is simply tied into the existing coolant lines of the machine

Examples of Materials but not limited to

- 6160 Aluminum
- 4140 Cold Rolled Steel
- 304 Stainless Steel
- Titanium