

Improving the Productivity and Profitability of CNC Machining Centers (With Very Little Effort)

Robbie McKee Sales/Marketing JM Performance Products, Inc.

Identifying and eliminating issues that are costing CNC milling manufacturers money in terms of time, tooling, and production.

Problems Associated with CNC Milling:

- Vibration
- Chatter
- Run-out
- Poor finishes
- Need to reduce depth of cuts
- Need to slow down
- Shortened tool life
- Higher power consumption
- Excessive spindle wear

Vibration and Chatter

- Caused by the inherent natural frequency of a cutting tool
- Creates surface finish problems
- Shortens tool life, especially carbide
- Increases wear and tear on the machine

Runout

- Negatively impacts tool life, especially carbide tooling
- Causes poor surface finishes

Poor Finishes

- Require additional benching operations
- Adds to cycle times
- Compromise part quality
- Create scrap
- Delay deliveries
- Destroy perishable tooling

Shortened Tool Life

- Increased cycle times
- Increased costs per part
- Impacts ability to move to Lights Out manufacturing

Tooling Test & Cost Savings Results

Testing Parameters

Tool Data (New, Two identical): Tool holder: Kennametal CV40EM100400 Insertable End Mill: Kennametal KIPR100AN162304CInserts: Kennametal ANGT16232PPER3LG Grade 725M

Material:

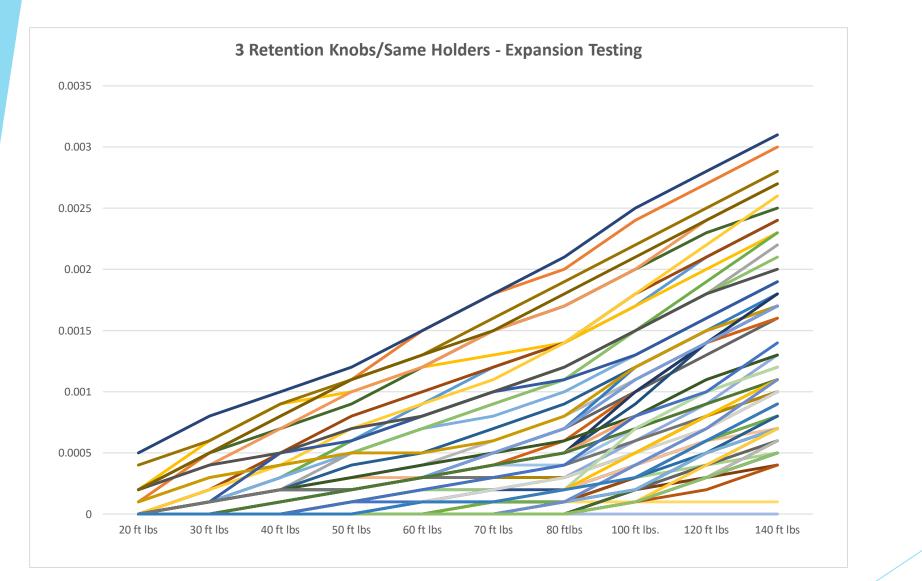
AISI 4142 pre heat treated Rc 35-40 Cutter: 1.0" Depth of cut: .100 Radial engagement: .720 Surface feet per minute (SFM): 430 Revolutions per minute (RPM): 1643 Feed per tooth (IPT): .005 Feed per Revolutions (FPR): .015 Standard Retention Knob

Setup failed at 93.4 cu in

<u>Results</u> High Torque Retention Knob

Setup failed at 356.7 cu in

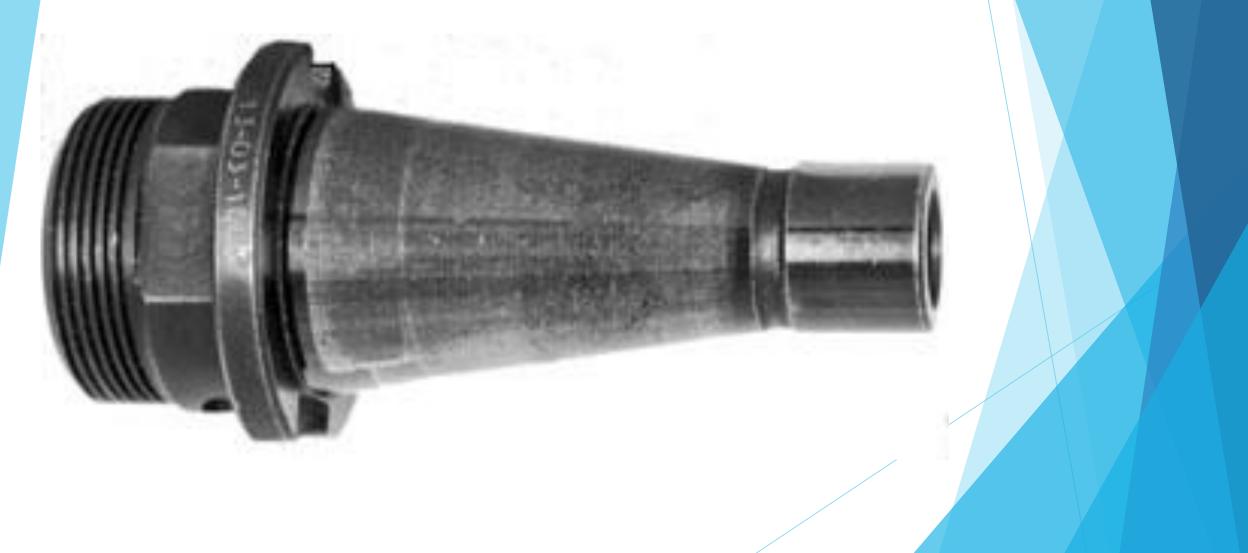
At \$25.13 per insert, the cost to remove 356.7 Cu In: \$301.56 \$75.19


Problems Associated with CNC Milling:

- Vibration
- Chatter
- Run-out
- Poor finishes
- Need to reduce depth of cuts
- Need to slow down
- Shortened tool life
- Higher power consumption
- Excessive spindle wear

Causes of Poor Toolholder to Spindle Contact

Dirt and debris on the spindle surface
Dirt and debris on the toolholder surface
Reduction in Draw Bar force
Toolholder expansion



NMTB Holder

Testing Parameters

Material: AISI 4142 Pre Heat Treated Rc 35-40 Cutter 1.0" Depth of Cut .100 Radial Engagement .720 SFM 430 RPM 1643 Feed Per Tooth (IPT) .005 Feed Per Revolution (FPR) .015

Tool Data

Toolholder Kennametal CV40EM100400 Kennametal Insertable End Mill KIPR100AN162304C Inserts Grade 725M ANTGT16232PPER3LG

PERFORMANCE PRODUCTS, INC.

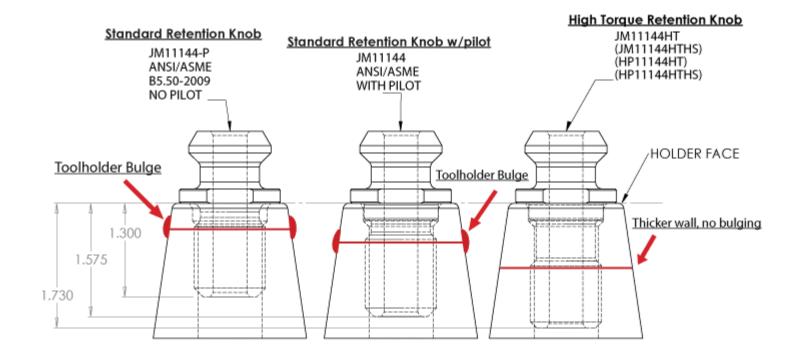
The Industry Leader in Milling Machine Optimization

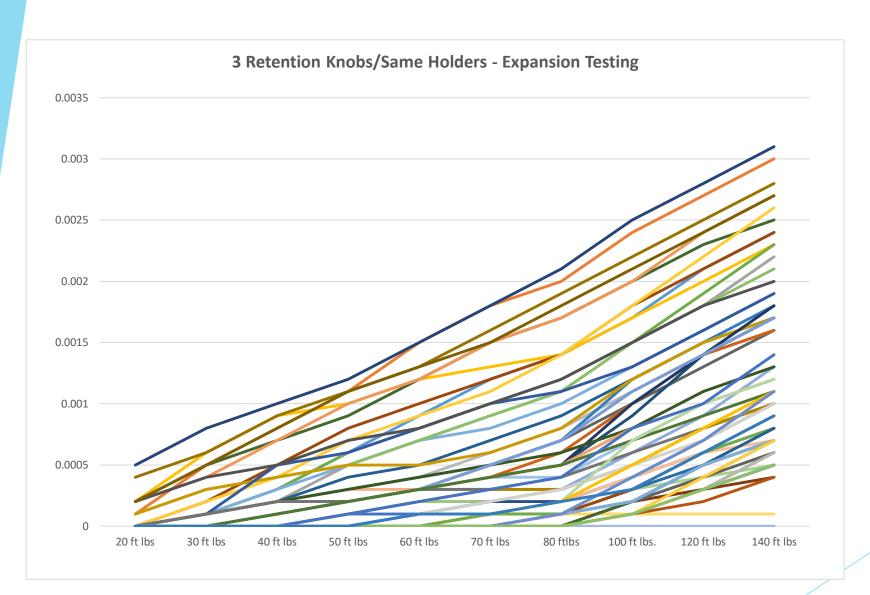
Tool Life Increased 3.82 Times

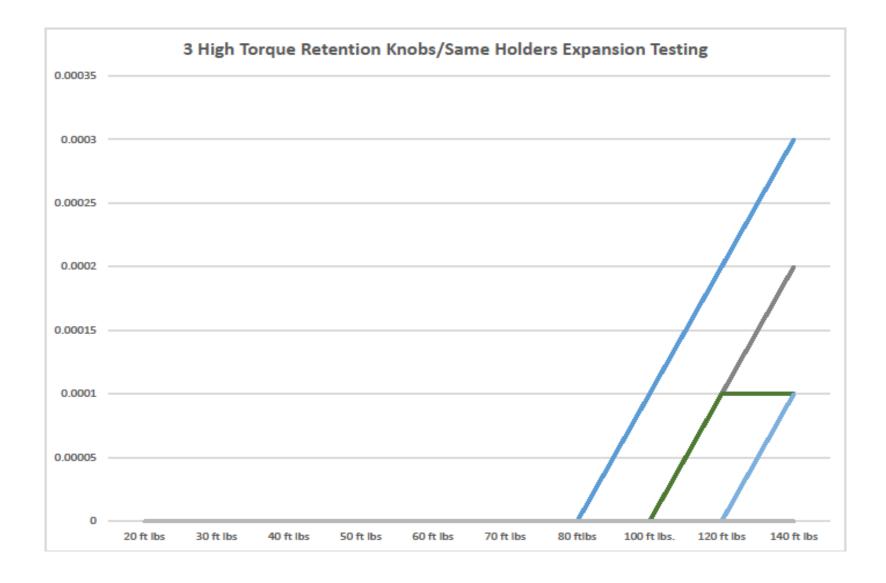
Retention Knob Command RC4E-0002 Total Removal Before Tool Failure 315.3 Cu in Total Removal Before Tool Failure 93.4 Cu in Axial Movement .00005" Axial Movement .0010" Diameter Increase At Gage Line Diameter Increase At Gage Line .00001458" .00029166" Observed Insert Wear After Observed Insert Wear After 93.4 Cu in Of Material Removal 93.4 Cu in Of Material Removal Standard Knob .000582" HT Knob .0004374" .00029166" .0001455" -.0000291" Spindle is larger than toolholder at gage line. .00001458" Ht Knob Standard Knob .00005" .0001" .0005" .0010" .0015" .0020" **Distance Short Of Full Engagement In Spindle.**

Retention Knob JM31226HT

Enter number of milling	
machines	1
Enter the number of hours worked a day	8
Enter number of days per week your mills run	5
Enter your hourly rate charged per milling machine	\$100
Enter average monthly cost of tooling per milling machine	\$1,000
Enter the hourly rate of the set-up person	\$25
Enter number of hours per week setting up milling	5
Number of retention knobs used per machine	30
Price each - High Torque Retention knobs	\$30.00


Savings Increase	10%
Increase Revenue	\$20,800
Tooling Savings	\$1,200
Setup Savings	\$650
Total Increase	\$22,650


Excerpt from JM Performance Products ROI Calculator


High Torque Retention Knobs -Correcting the Flaw

- Modifications to the standard retention knob design to eliminate toolholder expansion:
- Precision Pilot
- Relief beneath the pilot forces the threads deeper into the toolholder where the cross-section of steel is thicker.
- Threads are cut to start and finish 180° from each other
- Eliminated any non-mechanically beneficial threads
- The mass of the knob is dynamically balanced by design
- Calculated tightening specifications based on the size of the taper and the draw bar force of the machine.

Standard Retention Knobs vs. High Torque Retention Knobs

Customer Feedback

Customer: Evolution Gun Works, Quakertown, PA

Target: Avoid chatter and improve surface finishes

Steve Seaman, CNC Shop Foreman: "The knobs were easy to use and we saw the effect instantly. We would run an end mill and have chatter, then change to the High Torque retention knobs with the same lot of material, same coolant, on the same machine, then no chatter-impressive! The resulting surfaces are now consistently smooth with no imperfections."

Harbor City, CA

Target: Increase productivity and decrease machine load

- Replacing standard knobs with High Torque knobs yielded 15% increase in productivity and decrease in downtime respectively
- Noticed lower spindle loads, which is better for the machine
- Reported a 5% spindle load decrease using a 3.0" hi-feed insert mill running titanium
- When roughing titanium and stainless steel with the new knobs, they recorded a significant reduction in power consumption and overall tool life was improved

- □ Increased tool life in titanium from $2^{1/2}$ hours to just under 5 hours
- □ Improved cycle time:
 - □ Part 1: 5 hours 54 minutes compared to 12 hours originally
 - □ Part 2: 11 hour cycle time compared to 19 hours originally

Tooling and mills are performing the way they're designed to perform: efficiently, cost effectively, and precisely

Customer: Olson Custom Designs Pittsboro, IN

Target: Improve finishes and cycle times

Mitch Olson, Owner - "We've got the machines to handle nearly any material and run size, and any complexity so the job will be done right every time. There's a lot of money invested in the tooling and JMPP's knobs provide better overall finishes, require less hours, and shorter runs for us as a job shop."

"We will often machine exotic alloys and harder metals like titanium and stainless steel. We won't skimp out on tooling or workholding. JMPP's knobs are critical to the process, helping ensure quality feeds, speeds and finishes." Proper Installation, Handling, Inspection, Life Expectancy of Retention Knobs

TH-40-BL

1 shift - 3 years 2 shifts - 2 years 3 shifts - 1 year

Customer: CapTherm Systems, Inc.

Target: Improve machine performance, wear patterns and tool life

Timo Minx - "During the troubleshooting of wear patterns on our Cat 40 toolholders we started analyzing spindle and toolholder runout. We had always been torqueing pull studs and collets and were very concerned about the poor performance of our machine. After having switched to JM's High Torque retention knobs, the problem completely disappeared. We switched all of our toolholders over to HT pull studs and now consistently achieve perfect wear patterns on our tools. Using Haas Advanced Tool Management we tracked tool life, and this improved from around 8 hours to 10 hours on a ½" carbide endmill.

Customer: Briney Tooling Systems

Target: Better finishes, less bench time

Justin London, Sales Engineer - "Like most people I was skeptical that the change from a standard retention knob to JM's new high torque style would have much, if any, improvement on our tool holding. When we received the test knob in plant, it was used on our toughest machining application: high speed surfacing on hardened YXR33 material at 50 Rc. The initial visual look at the part, after the cycle, showed that nothing really seemed different. We did not see the real difference the knob made until our operator began to hand polish the part to the required surface finish. This process was taking 28 minutes per part, and after switching to the High Torque knob it only took the operator 2 minutes to polish the part into the correct surface finish (8 micro). That was an immediate savings of 26 minutes per part. This reason alone was enough to switch over all of our milling centers to High Torque Retention Knobs."

Customer: Jergens Industrial Sales

Target: Improve tool life

Mark Politi, Sales - I have a customer that cuts aluminum and keeps track of tool life by hours. They switched a CAT 40 holder on their Haas VF2 machine from a standard retention knob to JM's High Torque JM31514HT and tightened as recommended. Tool life on an 1/8" diameter mill at same speeds and feeds went from 6 hours to 8 hours. Customer is very happy with results and want to order 20 more knobs." - 30% increase in tool life

Customer: Northwest Machine Technologies (distributor)

Target: Improve tool life, tool runout

Lee Knowlton, Sales Manager - "A local customer purchased a new 5 axis Mazak vertical mill for high tolerance stainless and aluminum machining. They are always concerned about tool runout for part finishes, tool life, and machined feature tolerances. Most of their tools are also small diameter to as little runout as possible is critical...With a conventional quality retention knob the tool runout on the taper of a higher quality ER collet chuck was .0003" to .0004". Using the JM High Torque knob it is consistently .00015" to .0002"."

Customer: Carlstrom and Associates

Target: Achieve accurate boring results without multiple passes

Dan Carlstrom, Owner - "The customer was having a problem holding size on a component, so they had to take multiple boring passes and then do a final reaming pass to get this hole to size. When they used the High Torque retention knob on the toolholder, the boring tool was able to cut the hole to size, in tolerance, in one pass."

Date	5/24/2011
Customer	Natural gas compressor mfr
State	Ohio
Component	Compressor piston
Material	Ductile iron - 00-240 Bhn
Operation	6-3/4" diameter x 14-3/4" bore depth line bore
Requirement/problem	Eliminate waviness in finish
Machine	Okuma VTM-80Y
Through coolant	Yes - semi-syn - chipblaster - 1000psi
Retention knob used	JM36145HT
Current bar used	Seco steel finishing bar - 43.1 lbs.
Wohlhaupter bar used	565049 Digital balanced - 26.1 lbs.
Current insert used	CCGT 32.51 Walter high positive TicN
Wohlhaupter Insert used	CCGW 21.51 N34 CBN
Current cutting data	240SFM @ .004FPR
Wohlhaupter cutting data	1000SFM @ .005FPR
	Finish consistent, waviness eliminated;
	Balanced tool cut to within .0001 of what it was
Results	set to both back and front of bores

Customer	Tool and die mfr.
State	Kentucky
Component	AR15 upper receiver
Material	T7075 aluminum
Operation	1.1005 x 8" deep bore with interruptions
	Eliminate centerline drift caused by drilling
Requirement/problem	operation while maintaining cycle time
Machine	Haas VC3
Through coolant	Yes - semi-synthetic
Retention knob used	JM31114HT
Current bar used	Seco
	365031 balanced finish boring tool with 299003
Wohlhaupter bar used	carbide shank
Current insert used	Seco
Wohlhaupter Insert used	CCGW 21.50 N34 PCD
Current cutting data	800SFM @ .004FPR
Wohlhaupter cutting data	2500SFM @ .0025FPR
	Took .150 total DOC in one pass and held
	.0001 consistently while eliminating two
	intermediate boring passes and reducing cycle
Results	time by 65%.

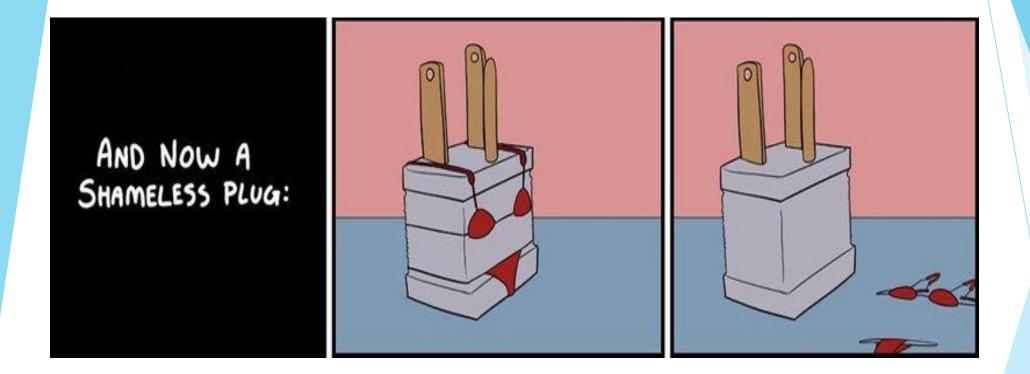
Date	11/15/2010
Customer	Vacuum mold mfr.
State	Ohio
Component	Vacuum mold guide bushing bore
Material	A36
Operation	3.00" x 6.5" bore
	Reduce cycle time by eliminating intermediate
Requirement/problem	boring passes
Machine	Toshiba 110R16
Through coolant	Yes - semi-syntetic
Retention knob used	JM31118BHT
Current bar used	Parlec
Wohlhaupter bar used	404008 CombiLine
Current insert used	Kennametal
Wohlhaupter Insert used	097862 WHT10 cermet
Current cutting data	400SFM @ .004FPR
Wohlhaupter cutting data	750SFM @ .005FPR
	Completed 6- bores holding .0001 total
	tolerance; finish is fantastic; reduced cycle time
Results	from 30 minutes to 6 minutes.

Date	11/15/2010
Customer	Mining equipment mfr.
State	Pennsylvania
Component	Electrical case
Material	A36
Operation	2.500" x 8.00" gage length
	Reduce cycle time by eliminating intermediate
Requirement/problem	boring passes
Machine	Mazak H800
Through coolant	Yes - semi-syntetic
Retention knob used	JM11144HT
Current bar used	Kaiser
Wohlhaupter bar used	404008 CombiLine
Current insert used	Iscar
Wohlhaupter Insert used	097862 WHT10 cermet
Current cutting data	450SFM @ .004FPR
Wohlhaupter cutting data	750SFM @ .006FPR
	Held .0002 tolerance on all bores, improved hole
	roundness and finish; reduced cycle time by
Results	55%

10/22/2010
Generator engine mfr.
Indiana
Connecting rod pin bore
Bronze
75mm diameter x 68mm deep bore
Simplify setting process while maintaining tool life and finish requirements
Mazak Integrex
Yes - semi-syntetic
JM31275HT
Kennametal Romicron
565045 Digital balanced
RCMA 43 PCD
CCGW 32.52 PCD
3000SFM @ 100mm/MIN
same
Tool cut exactly to adjustment made; unable to achieve .25Ra finish they're getting with round
insert; closest we could come was .291; did prove accuracy and repeatability of tool though.

Medical Device Manufacturer

Investment: \$110,000


Return:

- ▶ 40% increase in feed rates
- > 20% more parts
- 15% 25% longer tool life
- \$20.6 million in annual production
- Funding for facilities expansion

Benefits Beyond Tool Life and Production Increase:

- Improved tolerances
- Improved finishes
- Reduced bench time for finishing and polishing
- Better Operator efficiencies
- Reduced scrap
- Reduced machine maintenance down-time
- Reduction of overtime
- Reduction/elimination of custom tooling

PERFORMANCE PRODUCTS, INC.

The Industry Leader in Milling Machine Optimization

For more information: 1-800-322-7750 sales@jmppinc.com www.jmperformanceproducts.com

Southers Event

