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Self-aware manufacturing

Self-aware operation
▪ ability of a production or measuring machine to understand its current state and surroundings and respond

Approach
▪ combine physics-based and machine learning models to provide hybrid physics-guided machine learning approaches

Goal
▪ improve the accuracy, physical consistency, traceability, and generalizability of model predictions to improve 

manufacturing productivity

Project domain
▪ artificial intelligence
▪ machining process modeling
▪ stability, tool wear, part accuracy, surface finish, machine limitations…



Why now?
▪ new computing technologies and data are transforming manufacturing from empiricism to science, analog to digital
▪ global competitors (e.g., Germany’s Industry 4.0 and China’s Made in China 2025)
▪ US industry, especially SMEs, are looking to adopt new technology (artificial intelligence, smart manufacturing, 

Industry 4.0, Industrial Internet of Things, cloud computing, digital thread, digital twin, …)

Digital thread
▪ communication framework that enables seamless data flow and an integrated view of manufacturing processes
▪ links every phase of life cycle from design, production, and testing through end use

▪ digital solid model produced using CAD software
▪ CNC machining instructions produced using CAM software
▪ measurements performed to ensure conformance to design specifications
▪ all data partnered with physical part as digital twin

Challenges
▪ human intervention is still required at nearly all stages

▪ high volumes of data must be manually interpreted and implemented 
▪ CAM part program is manually produced for every part by programmer

Self-aware manufacturing
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Physics-guided machine learning

Modeling complex industrial processes 
▪ data-driven
▪ physics-based

Data-driven approaches
▪ machine learning and statistical techniques
▪ learn directly from sensor data and measurement results 
▪ advantage when relationships between the input and output variables 

are difficult to describe using physics
▪ challenge is that they are agnostic to physical laws

▪ dependent on data quality
▪ may not generalize beyond the training data set

Physics-based models
▪ preferred for scientific discovery
▪ challenges include

▪ every model is an approximation of reality
▪ model input parameters require identification, estimation, and calibration
▪ input uncertainty is propagated to output uncertainty



Physics-guided machine learning

Hybrid physics-guided machine learning
▪ combine data-driven and physics-based models with process measurements
▪ penalize results that are inconsistent with physical knowledge

▪ assure physical consistency of model predictions
▪ improve capability to generalize to other situations
▪ enable model output to be incorporated in new scientific discovery efforts

Physics-based 
model, y = f(x)

Input, x, 
related to 

output

Simulated 
output, ys

Physics-guided data learning 
model, Y = f(x, ys, ym)

Output, Y

Measured data, ym, 
for input, x
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Machining
▪ use defined cutting edge to shear away 

material (chips) and leave desired 
geometry

Considerations
▪ path planning
▪ fixturing
▪ tooling (selection, balancing, holder type)
▪ coolant management
▪ machine accuracy

▪ quasi-static positioning
▪ dynamic positioning
▪ thermal errors

▪ tool/workpiece vibrations
▪ chatter

Chatter
▪ self-excited vibration
▪ large forces
▪ large displacements
▪ poor surface
▪ tool/workpiece damage

Machining background



Machining background

Tool flexibility
▪ cutting tools are designed to be stiff
▪ the materials are selected to be hard and resist deformation.
▪ when the cutting force is applied to the tool it still deflects
▪ can think of a tool as a stiff spring

Workpiece flexibility
▪ sometimes the workpiece is also flexible
▪ workpiece can deflect as much or more than the tool when the cutting force is 

applied
▪ can also be thought of as a spring



Cutting force
▪ generated as the tool shears away material in the form of a chip

▪ cutting force depends on the chip thickness, chip width (into screen), material properties, and tool geometry
▪ larger chip width/thickness and negative rake angle gives higher force

Positive rake angle shown

Machining background



Machining background

Why does vibration occur in milling?
▪ teeth constantly enter and exit the cut
▪ the cutting force varies with these entries and exits
▪ the variable cutting force acts on the flexible tool and/or workpiece and causes displacement
▪ this variable displacement is vibration
▪ the amplitude of vibration depends on the tool/workpiece stiffness and spindle rotating frequency
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There are two main types of vibration in milling.

1) Forced vibration

The variable force causes the tool or workpiece to 
vibrate at the same frequency. For a spindle speed of 
12000 rpm and a cutter with two teeth, the tooth 
passing frequency is 12000/60*2 = 400 Hz.

▪ vibration magnitude depends on the relationship 
between the tooth passing frequency and the 
tool/workpiece dynamics

▪ describe the dynamics using the frequency response 
function, or FRF
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2) Self-excited vibration

▪ Steady input force is modulated into vibration near the system natural frequency

Examples include:

▪ whistle - steady air flow produces acoustic 
vibration

▪ violin - bow across string produces vibration at 
frequency that depends on the string length

▪ airplane wing flutter
▪ chatter in machining - steady excitation of teeth 

impacting work leads to large tool vibrations 
near system natural frequency
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x
(t

)

Tacoma Narrows Bridge (Galloping 
Gertie) opened in July 1940, but 
collapsed due to aero-elastic flutter four 
months later.

Machining background



Machining background

Regeneration is a primary mechanism for chatter

▪ force depends on chip thickness

▪ chip thickness depends on current vibration and previous pass

▪ current vibration depends on force

feedback

Why does chatter (self-excited vibration) occur in machining?

Chip thickness is nearly constant 
– small force variation → stable

Chip thickness varies so 
force varies → unstable



Machining background

Stability lobe diagram
▪ separates unstable (chatter) from stable (forced vibration) zones
▪ select spindle speed and axial depth combination to obtain stable cutting conditions without trial cuts
▪ best spindle speeds depend on dynamics and probably do not correspond to handbook values
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Machining background
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How do the two vibration types relate to the stability lobe diagram?
Forced vibration

Self-excited vibration
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Milling: tooth to tooth

One more wave per 
revolution for left 
stable point

What about the chip 
thickness variation?
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▪ Machining stability can be modeled analytically and numerically
▪ Physics-based model inputs include

▪ structural dynamics (frequency response function)
▪ force model (mechanistic coefficients)
▪ tool/cut geometry (number of teeth, diameter, radial depth of cut)

▪ IIoT enables new data to be generated at high volume/rate with low cost
▪ Treat every cut as an experiment

▪ Challenge: physics-based models inputs have uncertainty, so optimized machining parameter predictions are also 
uncertain

▪ Objective: combine physics-based models with experiments using machine learning model, use data to update model

Stability modeling



Stability modeling

▪ Data-learning models generally require a large amount of high quality data to train the model
▪ Approach here is to use the analytical turning stability limit to generate training data

β

Tool feed

Fn

Ft

FChip

hm

hm

b

Tool feed

Chip area

View from left side

mss bhKAKF ==

( ) ( ) mnmsn bhkbhKFF ===  coscos

( ) ( ) mtmst bhkbhKFF ===  sinsin

Force model

Frequency response function, FRF

0 500 1000 1500

-2

0

2

x 10
-5

R
e

a
l 
(m

/N
)

0 500 1000 1500

-4

-2

0

x 10
-5

Frequency (rad/s)

Im
a

g
 (

m
/N

)

( ) ( ) 













+−

−
=








222

2

21

11
Re

rr

r

kF

X



( ) ( ) 













+−

−
=








222 21

21
Im

rr

r

kF

X





kicmF

X

++−
=

ww 2

1



Stability modeling
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Surface regeneration can lead to 
chatter, a self-excited vibration

Generate stability lobe diagram to relate 
spindle speed to limiting chip width
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▪ Machine learning models generally require a large amount of high quality 
data to train the model

▪ Approach here is to use the analytical turning stability limit to generate 
training data



Stability modeling

𝛼1 = 90° 𝛽 = 70° 𝑘1 = 1 × 106 ΤN m 𝑘1= 1 × 106 N/m

𝛼2 = 0° ℎ1 = 0.1mm 𝑐1 =  315 N-s/m 𝑐2 = 315 N-s/m

𝐾𝑠 = 700 N/mm2 𝑚1 = 2.5 kg 𝑚2 = 2.5 kg

The limiting chip width 𝑏lim is calculated over a range of spindle speeds for a selected system. 

The graph of spindle 
speed vs. 𝑏lim is the 
stability map.  

▪ The data for the proposed machine learning 
models consists of  two sets: training and test
datasets

▪ Both the sets are generated by randomly selecting 
the chip width values for N spindle speeds

Training data, 
N = 201

Stable

Chatter



▪ Stable/unstable machining is a classification problem

▪ Classification is a supervised learning approach in which the model learns from input data and then uses this learning 
to classify new observations
▪ face image → male/female
▪ spindle speed-chip width → stable/unstable

▪ Several approaches are available
▪ Linear Classifiers: Logistic Regression, Naive Bayes Classifier
▪ Support Vector Machines
▪ Decision Trees
▪ Boosted Trees
▪ Random Forest
▪ Artificial Neural Networks
▪ Nearest Neighbor.

Stability modeling
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Stability modeling

▪ ANNs consist of neurons arranged in layers: an input layer, an output layer, and one or more hidden layers 
▪ The neurons are connected to each other through synapses
▪ Each neuron takes inputs from the other layers, transforms them (using the weights associated with the synapses) to 

an output through an activation function
▪ The neurons in the output layer calculate the output variables using the input from the previous (hidden) layer

Artificial Neural Networks (ANNs) 
were applied to stability modeling.

neuron

synapse



Stability modeling

Training data: 2001 points
Two hidden layer, six neuron ANN

Model reproduced lobes using the training data. How well does it perform on the test data?

Predicted decision boundary
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▪ Two input variables: chip width and spindle speed
▪ Output layer consists of only one node: a number between 0 and 1 (the likelihood of chatter occurring)
▪ Output ≥ 0.5 is taken to be chatter, Output < 0.5 is treated as stable
▪ Activation function: logistic function
▪ Error function: cross-entropy function



Predicted

Stable Chatter

A
ct

u
al Stable 215 2 217

Chatter 1 283 284

216 285

Confusion matrix

The ANN model with two 
hidden layers is able to 
predict with 99.4% 
accuracy on the test data 
(498/501).

Test data: 501 points

Stability modeling



Stability modeling

What if only one hidden layer with four neurons is used? 

N = 201 N = 601

N = 2001N = 2001

The stability lobe diagram is not 
predicted very well by the ANN model 
when only one hidden layer is used.

The bottom two cases correspond to 
the same number of points in the 
training data, but different 
distributions.

One hidden layer, 
four neuron ANN



Stability modeling

1. Use stability map to generate a data set (derived using uncertain FRF and force model)
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Training set
▪ data points generated using analytical stability model
▪ binary classification: stable or chatter

Experiments completed
▪ characterize behavior as stable or chatter
▪ data is in machine learning model domain (known spindle speed, depth of cut, and stability result)
▪ re-train model using new data



Stability modeling

2. Use ANN to define stability model from data set (input uncertainty influences ANN)
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Training set
▪ data points generated using analytical stability model
▪ binary classification: stable or chatter

Experiments completed
▪ characterize behavior as stable or chatter
▪ data is in machine learning model domain (known spindle speed, depth of cut, and stability result)
▪ re-train model using new data



Stability modeling

3. Collect data during experiments to determine stability for selected machining parameters

Spindle speed
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Example:
▪ cut is stable for initial model prediction of unstable
▪ at the selected spindle speed, the cut is therefore stable for all 

depths below the selected depth

Training set
▪ data points generated using analytical stability model
▪ binary classification: stable or chatter

Experiments completed
▪ characterize behavior as stable or chatter
▪ data is in machine learning model domain (known spindle speed, depth of cut, and stability result)
▪ re-train model using new data



Stability modeling

Training set
▪ data points generated using analytical stability model
▪ binary classification: stable or chatter

Experiments completed
▪ characterize behavior as stable or chatter
▪ data is in machine learning model domain (known spindle speed, depth of cut, and stability result)
▪ re-train model using new data

4. Combine experimental data with ANN stability model to update model

▪ stable experiment gives new knowledge about performance at selected 
spindle speed

▪ combine experimental points with data set
▪ use higher weight for experimental data
▪ update ANN stability model using all points

▪ reduce uncertainty and improve model accuracy over timeSpindle speed
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Replace FRF measurement with a model



Expanded stability modeling

Predict tool point frequency response function, FRF, using receptance coupling substructure analysis, RCSA

▪ Determine spindle-machine FRF using standard holder

▪ Model tool and holder

▪ Couple tool-holder model to spindle response and predict tool point FRF

+

F

X

+

Archive spindle-
machine FRF

+ + + =

Provides alternative to measurement of 
each tool-holder-spindle combination



Expanded stability modeling
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RCSA
▪ couple component FRFs to predict assembly FRFs
▪ consider both displacement and rotations, forces and moments
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Expanded stability modeling

Expanded modeling steps
1. Predict tool point FRF using receptance coupling substructure analysis (RCSA)
2. Generate stability map using predicted FRF and archived force model
3. Use stability map to generate a data set
4. Define data learning stability model from data set
5. Collect data during experiments to determine actual stability for selected machining parameters
6. Combine experimental data with training data to update data learning stability model

1. 2. 3. 4. 5.
6.

Uncertain



Expanded stability modeling

FRF 
model

Tool-holder model,
spindle measurement

Physics-guided data 
learning model for 
machining stability

Predicted cutting 
parameters

Cutting 
force 

model

Machining 
parameters, 

process signals

Stability 
map

Hybrid physics-guided data learning
▪ combine data-driven and physics-based models with process measurements
▪ train model using points obtained from analytical stability map
▪ update model with experimental results
▪ Improve model accuracy
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Questions?

Tony Schmitz
University of Tennessee, Knoxville/ORNL
tony.schmitz@utk.edu


